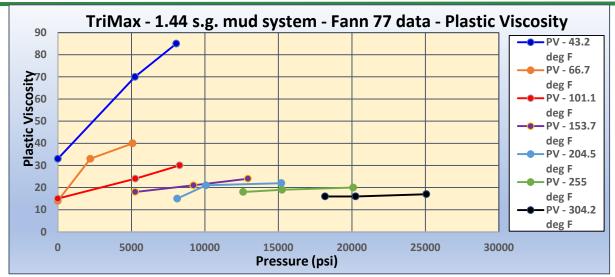
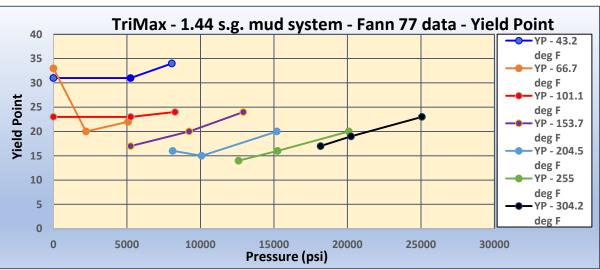


TRIMAX SYSTEM - INITIAL RESEARCH AND SIMULATIONS / FANN 77

- Reviewed the conventional "Flat Rheology" DW SBM systems to assess weaknesses and benefits
- Mixed numerous formulations to come up with a new system that lowered ECDs downhole
- Utilized 2x Fann77; 1x Fann77 in Villahermosa for testing the formulations
- Compared Fluid Rheological Profiles of Flat Rheology vs TriMAX systems utilizing HYDRAULICS SOFTWARE


TRIMAX SYSTEM TESTING


- Formulations from 1.08 s.g. to 2.16 s.g. are being tested with Fann77 viscometers to give a complete database of the TriMAX system to model performance with HYDRAULICS SOFTWARE
- The 1.44 & 1.68 s.g. formulation Fann77 data has been used with MAXSITE HYDRAULICS to show ECD reduction downhole
- Other formulations are modelled with MAXSITE HYDRAULICS as more Fann77 data is acquired.

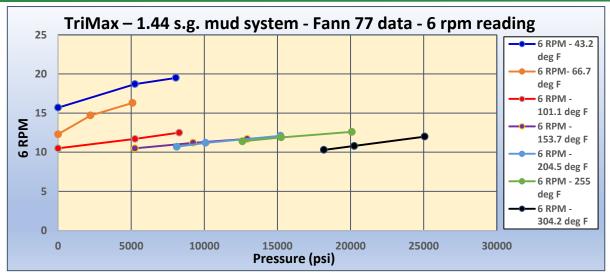
TriMAX

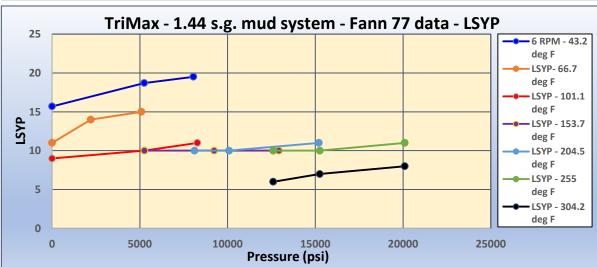
Property	Range (40-150°F)
Mud Weight – Ib/gal	9.0 – 18.0
Plastic Viscosity – cP	16 – 40
Yield Point – lb/100ft ²	10 – 30
Gel Strengths - lb/100ft ²	5-15 / 6-20 /
(10s /10m/30m)	8-25
Lime excess – lb/bbl	1 - 3
Electrical Stability, Volts	250 – 1,000
HTHP Fluid Loss - cc's/30min	4.0 – 15.0
Oil/Water ratio (OWR)	65:35 – 95:5

TRIMAX - FANN 77 DATA REVIEW

Plastic Viscosity & Yield Point

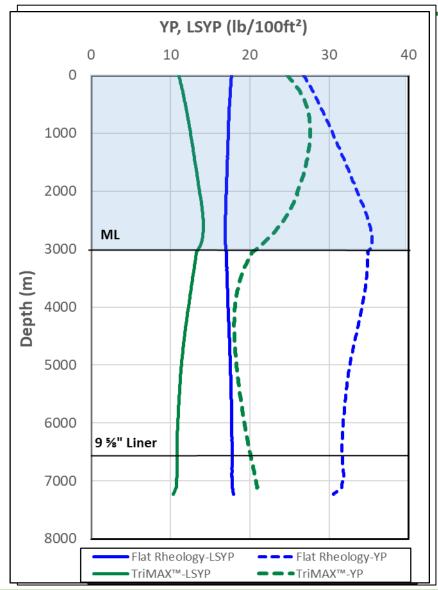
Response to Temperature and Pressure

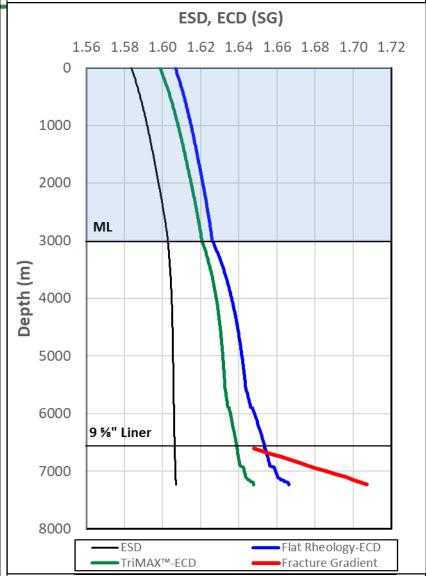

- Plastic Viscosity
 High 6.1°C response for 8000 psi
 Pressure at 2590m = 5300 psi
 PV 70 at 5300 psi
- 2. Yield Point


 30-34 at 6.1°C not high for riser

 As temperature ramps, yield point is fairly consistent in pressure range

TRIMAX — FANN 77 DATA REVIEW

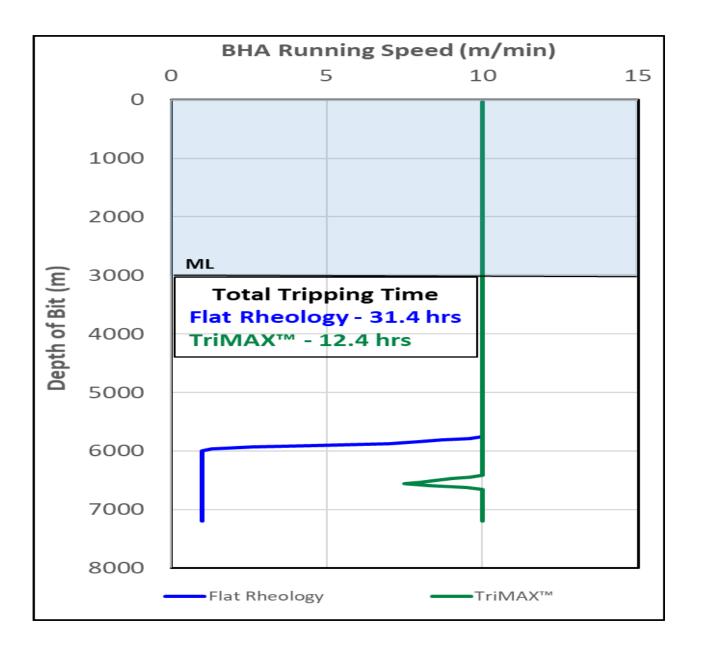



6 RPM Fann 77 Readings & LSYP

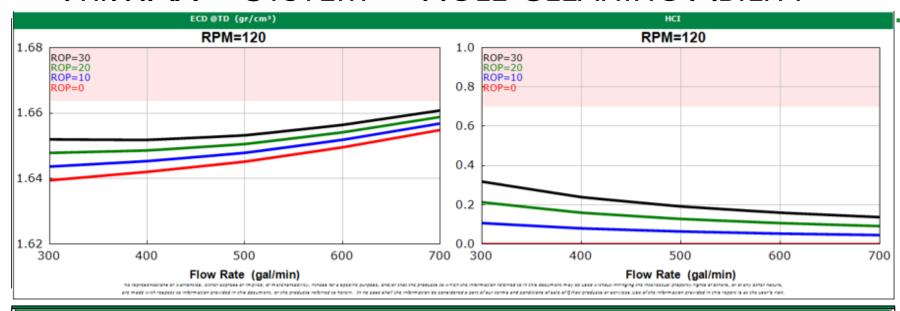
Response to Temperature and Pressure

- 1. 6 RPM Fann 77 readings
 - 6.1°C reading not high at all
 - High enough to clean big hole
 - Fairly consistent across temp and pressure ranges
- 2. LSYP low shear rate yield point
 - 6.1°C reading similar to 6 rpm readings
 - Fairly consistent across temp and pressure ranges
 - 151°C shows a drop from 123.9°C, but will help in ECD reading in higher temperature sections of the hole

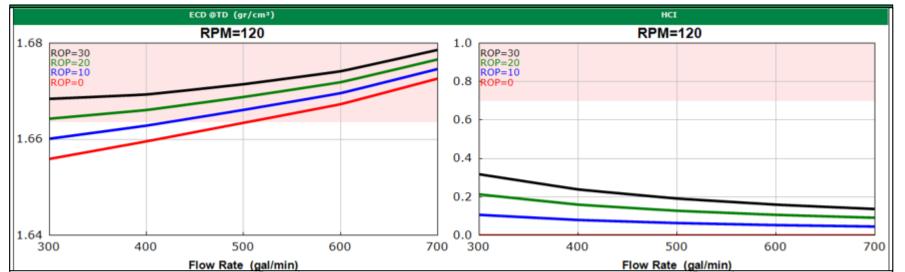
TRIMAX[™] System - Well Simulation — Lower ECD result


Data from DW Mexico Well 8.5"OH section – TD @ 7229m ROP = 10mph, RPM=120 TD Mud Weight = 1.58 S.G. BHST = 132°C

Results: TriMAX SBM ECD is 0.018 S.G (0.15 ppg) lower than Conventional Flat Rheology SBM ECD during drilling operations


TriMAX SBM could have potentially saved lost circulation issues in the 8.5" OH section

TRIMAX SYSTEM - WELL SIMULATIONS — FASTER TRIPPING SPEEDS

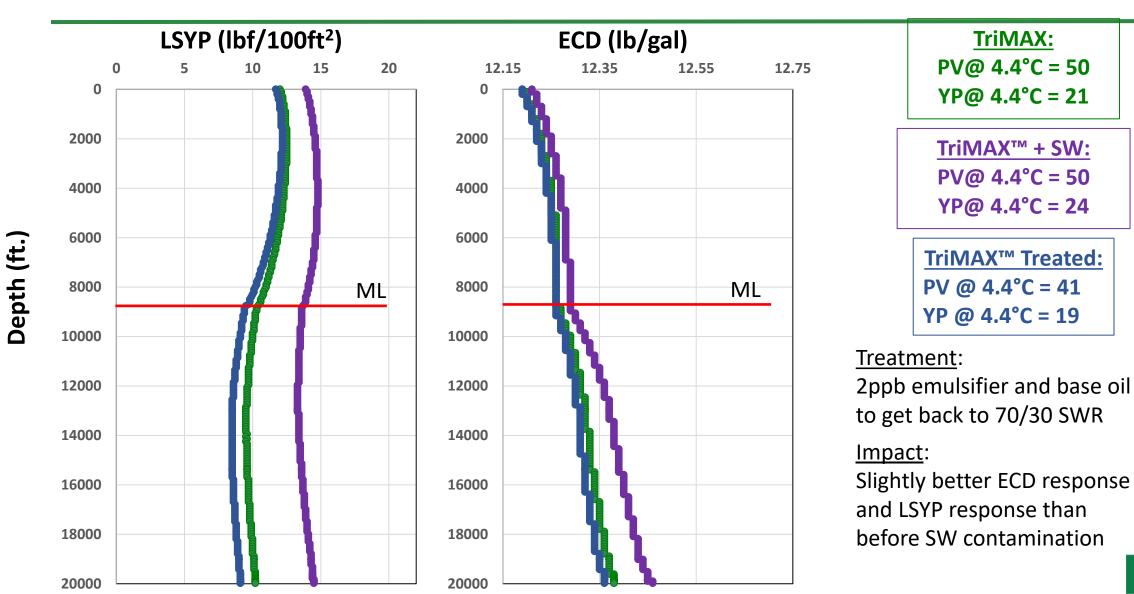

- Field Data from Deepwater Well offshore Mexico
- 8.5"OH section TD @ 7229m
- TD Mud Weight = 1.58 S.G.
- BHST = 132° C
- Simulation: Running Drilling Assembly in hole after trip out
- Results: Utilizing the TriMAX SBM could potentially saved about 19 hrs of tripping time (invisible NPT)
- Assuming a spread rate of \$1,000,000 for a 6th generation Semi-Submersible MODU, the resultant savings to Pemex would be \$791,666 USD.

TRIMAX[™] SYSTEM — HOLE CLEANING ABILITY

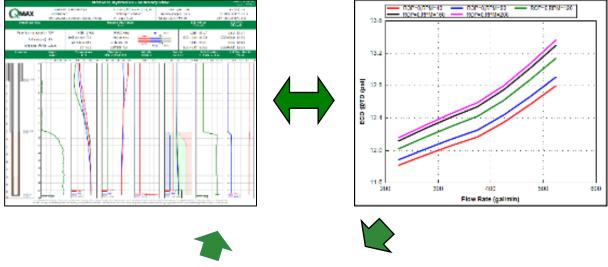
Data: DW Well O/S Mexico 8.5"OH section – TD @ 7229m TD Mud Weight = 1.58 S.G. BHST = 132°C

Results: TriMAX SBM system shows similar hole cleaning ability as the conventional Flat Rheology SBM systems

Confidential. Not to be distributed without QMax consent.

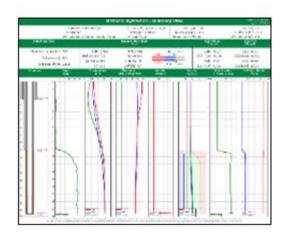

TRIMAX[™] SYSTEM - SOLIDS TOLERATION

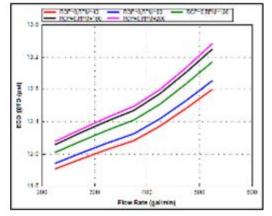
	TriMAX Drilling Fluid @ 1.44 s.g.				Contaminated with 5% Rev Dust			
Rheology Results	Rolled @ 65.5C				Rolled @ 65.5°C			
Rheology Temp @	4.4C	37.8C	48.8C	65.5C	4.4C	37.8C	48.8C	65.5C
Eletrical Stability, Volts	460				508			
600 rpm reading	121	66	57	49	151	81	64	52
300 rpm reading	71	43	36	31	89	49	38	32
200 rpm reading	53	34	28	24	67	38	29	24
100 rpm reading	34	24	20	16	44	25	20	15
6 rpm reading	12	11	9	8	14	8	7	6
3 rpm reading	11	11	8	7	12	7	6	6
Plastic Viscosity, cP	50	23	21	18	62	32	26	20
Yield Point, lb/100ft ²	21	20	15	13	27	17	12	12
10-sec Gel, lb/100ft ²	14	14	12	11	13	10	9	9
10 min Gel, lb/100ft ²	21	19	14	9	17	18	15	13
30-min Gel, lb/100ft ²	27	17	13	12	20	18	13	11


Solids Toleration – 1.44 s.g. TriMAX SBM

- Hot rolled and tested from 4.4-65.5°C –
 added 5% solids to base fluid
- 4.4°C shows increase from 50 to 62 in PV –
 23%, but not significant for operations
- 4.4°C shows increase from 21 to 27 in YP not significant for operations
- Higher temperatures shows decreasing rheology effects of solids contamination
- Electrical Stability increased from 460-508 mv
- 10s/10m/30m gels show improvement with solids contamination

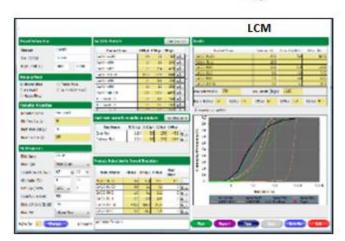
TRIMAXTM System — Contamination with 10% Seawater


TRIMAX SYSTEM — SEEPAGE / LOSSES PLAN


Report to the Color of the Colo

- Prevention and Control Plan of losses from seepage or major losses
- Utilize MaxSite Hydraulics daily for drilling optimization and problem indications, tripping recommendations, sweep modelling, etc.
- Utilize low density **TriMAX** SBM where possible
- QSEAL Software for optimum LCM PSD range for seepage losses
- LCM Systems if major losses occur:
 - QMaxPlug cross-linked pill
 - QMaxSqueeze high fluid loss pill

TRIMAX[™] SYSTEM — SEEPAGE / LOSSES PLAN



- Prevention and Control Plan of losses from seepage or major losses
- Utilize Hydraulics daily for drilling optimization and problem indications, tripping recommendations, sweep modelling, etc.
- Utilize low density **TriMAX** SBM where possible
- LCM Software for optimum LCM PSD range for seepage losses
- LCM Systems if major losses occur:
 - ID-Plug cross-linked pill
 - ID-Squeeze high fluid loss pill

Thank you

